Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 676
Filtrar
1.
Front Cell Infect Microbiol ; 13: 1192800, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37377641

RESUMO

Leishmaniasis is a neglected tropical parasitic disease with few approved medications. Cutaneous leishmaniasis (CL) is the most frequent form, responsible for 0.7 - 1.0 million new cases annually worldwide. Leukotrienes are lipid mediators of inflammation produced in response to cell damage or infection. They are subdivided into leukotriene B4 (LTB4) and cysteinyl leukotrienes LTC4 and LTD4 (Cys-LTs), depending on the enzyme responsible for their production. Recently, we showed that LTB4 could be a target for purinergic signaling controlling Leishmania amazonensis infection; however, the importance of Cys-LTs in the resolution of infection remained unknown. Mice infected with L. amazonensis are a model of CL infection and drug screening. We found that Cys-LTs control L. amazonensis infection in susceptible (BALB/c) and resistant (C57BL/6) mouse strains. In vitro, Cys-LTs significantly diminished the L. amazonensis infection index in peritoneal macrophages of BALB/c and C57BL/6 mice. In vivo, intralesional treatment with Cys-LTs reduced the lesion size and parasite loads in the infected footpads of C57BL/6 mice. The anti-leishmanial role of Cys-LTs depended on the purinergic P2X7 receptor, as infected cells lacking the receptor did not produce Cys-LTs in response to ATP. These findings suggest the therapeutic potential of LTB4 and Cys-LTs for CL treatment.


Assuntos
Leishmaniose Cutânea , Leishmaniose , Camundongos , Animais , Camundongos Endogâmicos C57BL , Leucotrienos/fisiologia , Leishmaniose Cutânea/tratamento farmacológico , Cisteína , Leucotrieno B4 , Leishmaniose/patologia
2.
Adv Immunol ; 142: 65-84, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31296303

RESUMO

The cysteinyl leukotrienes (cys-LTs), leukotriene C4, (LTC4), LTD4, and LTE4, are lipid mediators of inflammation. LTC4 is the only intracellularly synthesized cys-LT through the 5-lipoxygenase and LTC4 synthase pathway and after transport is metabolized to LTD4 and LTE4 by specific extracellular peptidases. Each cys-LT has a preferred functional receptor in vivo; LTD4 to the type 1 cys-LT receptor (CysLT1R), LTC4 to CysLT2R, and LTE4 to CysLT3R (OXGR1 or GPR99). Recent studies in mouse models revealed that there are multiple regulatory mechanisms for these receptor functions and each receptor plays a distinct role as observed in different mouse models of inflammation and immune responses. This review focuses on the integrated host responses to the cys-LT/CysLTR pathway composed of sequential ligands with preferred receptors as seen from mouse models. It also discusses potential therapeutic targets for LTC4 synthase, CysLT2R, and CysLT3R.


Assuntos
Cisteína/fisiologia , Inflamação/imunologia , Leucotrieno C4/fisiologia , Leucotrieno E4/fisiologia , Leucotrienos/fisiologia , Receptores de Leucotrienos/imunologia , Proteínas Ativadoras de 5-Lipoxigenase/genética , Proteínas Ativadoras de 5-Lipoxigenase/metabolismo , Animais , Araquidonato 5-Lipoxigenase/genética , Araquidonato 5-Lipoxigenase/metabolismo , Asma Induzida por Aspirina/imunologia , Asma Induzida por Aspirina/metabolismo , Cisteína/biossíntese , Cisteína/química , Cisteína/metabolismo , Dipeptidases/genética , Dipeptidases/metabolismo , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Fosfolipases A2 do Grupo IV/genética , Fosfolipases A2 do Grupo IV/metabolismo , Humanos , Inflamação/metabolismo , Leucotrieno C4/biossíntese , Leucotrieno C4/química , Leucotrieno C4/metabolismo , Leucotrieno E4/biossíntese , Leucotrieno E4/química , Leucotrieno E4/metabolismo , Leucotrienos/biossíntese , Leucotrienos/química , Leucotrienos/metabolismo , Camundongos , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/metabolismo , Receptores de Leucotrienos/genética , Receptores de Leucotrienos/metabolismo
3.
Atherosclerosis ; 284: 50-58, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30875493

RESUMO

BACKGROUND AND AIMS: COX-2-selective inhibitors have been associated with an increased risk of cardiovascular complications, and their impact on atherosclerosis (AS) remains controversial. The proinflammatory COX-2 and 5-LO pathways both play essential roles in AS and related cardiovascular diseases. Previous clinical studies have provided evidence of the ability of COX-2-selective inhibitors to shunt AA metabolism from the COX-2 pathway to the 5-LO pathway. In this study, the effects of celecoxib, a selective COX-2 inhibitor, on AS and the COX-2 and 5-LO pathways were investigated in vivo and in vitro. METHODS: Male ApoE-/- mice fed a western-type diet for 18 weeks and cultured mouse RAW264.7 macrophages stimulated with 1 µg/mL LPS for 24 h were used in this study. RESULTS: In ApoE-/- mice, intragastric administration of celecoxib (80 mg/kg/d) for 18 weeks significantly increased aortic atherosclerotic lesion area but had no effect on hyperlipidemia. In addition, celecoxib significantly lowered TNF-α and PGE2 levels but increased both LTB4 and CysLTs levels in aortic tissues. In LPS-stimulated RAW264.7 macrophages, pretreatment with 8 µmol/L celecoxib for 1 h significantly lowered the TNF-α, NO, and PGE2 levels but increased the LTB4 and CysLTs levels. Celecoxib also decreased the protein and mRNA expression of COX-2 but increased the expression of 5-LO and LTC4S in both ApoE-/- mouse aortic tissues and LPS-stimulated RAW264.7 macrophages. CONCLUSION: The COX-2-selective inhibitor celecoxib can aggravate atherogenesis, an effect that may be related to upregulation of LTs via a 5-LO pathway shunt.


Assuntos
Aterosclerose/induzido quimicamente , Celecoxib/efeitos adversos , Inibidores de Ciclo-Oxigenase 2/efeitos adversos , Leucotrienos/fisiologia , Células RAW 264.7/fisiologia , Regulação para Cima/efeitos dos fármacos , Animais , Apolipoproteínas E/genética , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células RAW 264.7/efeitos dos fármacos , Índice de Gravidade de Doença
4.
Pharmacol Res ; 139: 182-190, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30468889

RESUMO

The incidence and severity of asthma preponderate in women versus men. Leukotrienes (LTs) are lipid mediators involved in asthma pathogenesis, and sex disparities in LT biosynthesis and anti-LT pharmacology in inflammation have recently emerged. Here, we report on sex dimorphism in LT production during allergen sensitization and its correlation to lung function. While high plasma levels of IgE, as sensitization index, were elevated in both sexes, LT levels increased only in lungs of female ovalbumin-sensitized BALB/c mice. Sex-dependent elevated LT levels strictly correlated to an enhanced airway hyperreactivity, pulmonary inflammation and mast cell infiltration/activation in female mice. Importantly, this sex bias was coupled to superior therapeutic efficacy of different types of clinically used LT modifiers like zileuton, MK886 and montelukast in female animals. Our findings reveal sex-dependent LT production as a basic mechanism of sex dimorphism in allergic asthma, and suggest that women might benefit more from anti-LT asthma therapy.


Assuntos
Asma/imunologia , Leucotrienos/fisiologia , Caracteres Sexuais , Alérgenos/imunologia , Animais , Asma/patologia , Asma/fisiopatologia , Feminino , Imunoglobulina E/sangue , Pulmão/patologia , Pulmão/fisiopatologia , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Ovalbumina/imunologia
5.
Curr Allergy Asthma Rep ; 16(7): 48, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27333777

RESUMO

Bioactive lipids are critical regulators of inflammation. Over the last 75 years, these diverse compounds have emerged as clinically-relevant mediators of allergic disease pathophysiology. Animal and human studies have demonstrated the importance of lipid mediators in the development of asthma, allergic rhinitis, urticaria, anaphylaxis, atopic dermatitis, and food allergy. Lipids are critical participants in cell signaling events which influence key physiologic (bronchoconstriction) and immune phenomena (degranulation, chemotaxis, sensitization). Lipid-mediated cellular mechanisms including: (1) formation of structural support platforms (lipid rafts) for receptor signaling complexes, (2) activation of a diverse family of G-protein coupled receptors, and (3) mediating intracellular signaling cascades by acting as second messengers. Here, we review four classes of bioactive lipids (platelet activating factor, the leukotrienes, the prostanoids, and the sphingolipids) with special emphasis on lipid synthesis pathways and signaling, atopic disease pathology, and the ongoing development of atopy treatments targeting lipid mediator pathways.


Assuntos
Hipersensibilidade/metabolismo , Animais , Eicosanoides/fisiologia , Humanos , Hipersensibilidade/tratamento farmacológico , Hipersensibilidade/imunologia , Fatores Imunológicos/farmacologia , Fatores Imunológicos/uso terapêutico , Leucotrienos/fisiologia , Metabolismo dos Lipídeos , Terapia de Alvo Molecular , Fator de Ativação de Plaquetas/fisiologia , Transdução de Sinais , Esfingolipídeos/fisiologia
6.
J Physiol ; 594(18): 5055-77, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27324312

RESUMO

Arterioles in the peripheral microcirculation are exquisitely sensitive to changes in PO2 in their environment: increases in PO2 cause vasoconstriction while decreases in PO2 result in vasodilatation. However, the cell type that senses O2 (the O2 sensor) and the signalling pathway that couples changes in PO2 to changes in arteriolar tone (the mechanism of action) remain unclear. Many (but not all) ex vivo studies of isolated cannulated resistance arteries and large, first-order arterioles support the hypothesis that these vessels are intrinsically sensitive to PO2 with the smooth muscle, endothelial cells, or red blood cells serving as the O2 sensor. However, in situ studies testing these hypotheses in downstream arterioles have failed to find evidence of intrinsic O2 sensitivity, and instead have supported the idea that extravascular cells sense O2 . Similarly, ex vivo studies of isolated, cannulated resistance arteries and large first-order arterioles support the hypotheses that O2 -dependent inhibition of production of vasodilator cyclooxygenase products or O2 -dependent destruction of nitric oxide mediates O2 reactivity of these upstream vessels. In contrast, most in vivo studies of downstream arterioles have disproved these hypotheses and instead have provided evidence supporting the idea that O2 -dependent production of vasoconstrictors mediates arteriolar O2 reactivity, with significant regional heterogeneity in the specific vasoconstrictor involved. Oxygen-induced vasoconstriction may serve as a protective mechanism to reduce the oxidative burden to which a tissue is exposed, a process that is superimposed on top of the local mechanisms which regulate tissue blood flow to meet a tissue's metabolic demand.


Assuntos
Arteríolas/fisiologia , Oxigênio/fisiologia , Prostaglandinas/fisiologia , Animais , Células Endoteliais/fisiologia , Eritrócitos/fisiologia , Humanos , Ácidos Hidroxieicosatetraenoicos/fisiologia , Leucotrienos/fisiologia , Mastócitos/fisiologia , Miócitos de Músculo Liso/fisiologia , Óxido Nítrico/fisiologia , Superóxidos/metabolismo , Vasoconstrição
7.
Adv Otorhinolaryngol ; 77: 40-5, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27115997

RESUMO

Cysteinyl leukotrienes (CysLTs) are lipid mediators that have been implicated in the pathogenesis of allergic rhinitis. Pharmacological studies using CysLTs indicate that two classes of receptor exist: CysLT1 receptor (CysLT1R) and CysLT2 receptor (CysLT2R). The CysLT1R is a high-affinity leukotriene D4 receptor with lower affinity for leukotriene C4 that is sensitive to the CysLT1R antagonist currently used to treat asthma and allergic rhinitis. Our previous immunohistochemical and autoradiographic studies have demonstrated the presence of anti-CysLT1R antibodies labeled in eosinophils, mast cells, macrophages, neutrophils and vascular endothelial cells in human nasal mucosa. Furthermore, we have revealed that the novel radioactive CysLT1R antagonist [3H]-pranlukast bound specifically to CysLT1R in human inferior turbinates and its binding sites were localized to vascular endothelium and the interstitial cells. These data suggest that the major targets of CysLT1R antagonists in allergic rhinitis are the vascular bed and infiltrated leukocytes such as mast cells, eosinophils and macrophages. Clinical trials have demonstrated that CysLT1R antagonists are as effective as antihistamines for the treatment of allergic rhinitis; however, they are less effective than intranasal steroids. The use of CysLT1R antagonists in combination with antihistamines has generally resulted in greater efficacy than when these agents were used alone.


Assuntos
Cisteína/fisiologia , Leucotrienos/fisiologia , Mucosa Nasal/metabolismo , Rinite Alérgica/metabolismo , Humanos , Mediadores da Inflamação , Mucosa Nasal/patologia , Rinite Alérgica/patologia
8.
Artigo em Inglês | MEDLINE | ID: mdl-26673555

RESUMO

The pathophysiology of diabetic retinopathy is highly complex and encompasses the detrimental roles of numerous factors/mediators in inducing various molecular pathological alterations. Although the roles of many inflammatory mediators, involved in the progression of this complication, have been thoroughly researched and studied, the part played by leukotrienes remains widely neglected. This review focuses on leukotrienes-induced mediation and aggravation of the pathological pathways, such as inflammation, oxidative stress and retinal angiogenesis, responsible for exhibition of various characteristic events including leukostasis, macular edema, retinal neovascularization and vitreous hemorrhages, hence, marking the advent of diabetic retinopathy. Acknowledging these roles, it might be possible to potentially utilize leukotrienes antagonists for suppressing or reducing the intensity of the mentioned pathological alterations. Hence, leukotrienes antagonists may act as an effective adjuvant therapy either along with other developing novel therapies (such as anti-VEGF or anti-TNF-α therapy), or with the established conventional laser photocoagulation treatment, to provide additional symptomatic relief or, possibly prevent the progression of diabetic retinopathy.


Assuntos
Retinopatia Diabética/fisiopatologia , Inflamação/fisiopatologia , Leucotrienos/fisiologia , Estresse Oxidativo/fisiologia , Neovascularização Retiniana/fisiopatologia , Retinopatia Diabética/tratamento farmacológico , Retinopatia Diabética/metabolismo , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Mediadores da Inflamação/antagonistas & inibidores , Mediadores da Inflamação/metabolismo , Antagonistas de Leucotrienos/uso terapêutico , Leucotrienos/metabolismo , Modelos Biológicos , Terapia de Alvo Molecular , Estresse Oxidativo/efeitos dos fármacos , Neovascularização Retiniana/tratamento farmacológico , Neovascularização Retiniana/metabolismo
9.
Curr Mol Med ; 15(7): 598-605, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26321758

RESUMO

Epidemiological studies associate obesity with onset of asthma, especially in obese children, suggesting obesity as the risk factor for asthma. Obesity-induced chronic inflammation has been implicated in the lung inflammation, yet specific mediators and mechanisms are lacking. Obesity is associated with increased expression of 5-lipoxygenase (5-LO) pathway and increased Leukotrienes (LTs) production has been observed in obese asthma patients. However, the precise mechanism that predisposes lungs inflammation in obese is not clearly understood. This article discusses the production and regulation of LTs in obese individuals and presents probable mechanisms regarding the role of LTs in lung inflammation that may lead to obesity-induced asthma. Leukotrienes are well known mediators of asthma but their role in obesity-induced asthma is not clearly understood and thus needs further research. Since efficient antagonists and inhibitors of 5-LO pathways are known, understanding of molecular mechanism of LTs, especially Cysteinyl-LTs, in obesity-induced asthma could lead to optimal treatment regimens for the prevention and treatment of asthma in obese individuals.


Assuntos
Asma/imunologia , Cisteína/fisiologia , Leucotrienos/fisiologia , Obesidade/complicações , Animais , Asma/etiologia , Humanos , Obesidade/imunologia , Fatores de Risco
10.
Am J Rhinol Allergy ; 29(1): 35-40, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25590316

RESUMO

BACKGROUND: Aspirin-exacerbated respiratory disease (AERD) is explained in part by overexpression of 5-lipoxygenase and leukotriene C4 synthase (LTC4S), resulting in constitutive overproduction of cysteinyl leukotrienes (CysLTs) and driving the surge in CysLT production that occurs with aspirin ingestion. Similarly, AERD is characterized by the overexpression of CysLT receptors. Increased levels of both interleukin (IL)-4 and interferon (IFN)-γ are present in the tissue of AERD subjects. Previous studies demonstrated that IL-4 is primarily responsible for the up-regulation of LTC4S by mast cells. METHODS: Literature review. RESULTS: Our previous studies demonstrated that IFN-γ, but not IL-4, drives this process in eosinophils. These published studies also extend to both IL-4 and IFN-γ the ability to up-regulate CysLT receptors. Prostaglandin E2 (PGE2) acts to prevent CysLT secretion by inhibiting mast cell and eosinophil activation. PGE2 concentrations are reduced in AERD, and our published studies confirm that this reflects diminished expression of cyclooxygenase (COX)-2. A process again that is driven by IL-4. Thus, IL-4 and IFN-γ together play an important pathogenic role in generating the phenotype of AERD. Finally, induction of LTC4S and CysLT1 receptors by IL-4 reflects in part the IL-4-mediated activation of signal transducer and activator of transcription 6 (STAT6). Our previous studies demonstrated that aspirin blocks trafficking of STAT6 into the nucleus and thereby prevents IL-4-mediated induction of these transcripts, thereby suggesting a modality by which aspirin desensitization could provide therapeutic benefit for AERD patients. CONCLUSION: This review will examine the evidence supporting this model.


Assuntos
Aspirina/efeitos adversos , Doenças Respiratórias/induzido quimicamente , Cisteína/fisiologia , Eosinofilia/induzido quimicamente , Humanos , Interferon gama/fisiologia , Interleucina-4/fisiologia , Leucotrieno E4/fisiologia , Leucotrienos/fisiologia , Mastócitos/efeitos dos fármacos , Mastócitos/fisiologia , Fenótipo , Receptores de Leucotrienos/fisiologia , Receptores de Prostaglandina E/fisiologia , Doenças Respiratórias/imunologia
11.
Nat Rev Rheumatol ; 10(5): 295-303, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24468934

RESUMO

Muscle atrophy and weakness are often observed in patients with chronic inflammatory diseases, and are the major clinical features of the autoimmune myopathies, polymyositis and dermatomyositis. A general understanding of the pathogenesis of muscle atrophy and the impaired muscle function associated with chronic inflammatory diseases has not been clarified. In this context, arachidonic acid metabolites, such as the prostaglandin and leukotriene subfamilies, are of interest because they contribute to immune and nonimmune processes. Accumulating evidence suggests that prostaglandins and leukotrienes are involved in causing muscular pain and inflammation, and also in myogenesis and the repair of muscles. In this Review, we summarize novel findings that implicate prostaglandins and leukotrienes in the muscle atrophy and weakness that occur in inflammatory diseases of the muscles, with a focus on inflammatory myopathies. We discuss the role of the arachidonic acid cascade in skeletal muscle growth and function, and individual metabolites as potential therapeutic targets for the treatment of inflammatory muscle diseases.


Assuntos
Ácido Araquidônico/metabolismo , Músculo Esquelético/metabolismo , Miosite/metabolismo , Humanos , Leucotrienos/metabolismo , Leucotrienos/fisiologia , Prostaglandinas/metabolismo , Prostaglandinas/fisiologia
12.
Reprod Domest Anim ; 48 Suppl 1: 25-37, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23962212

RESUMO

The bovine corpus luteum (CL) is a transient gland with a life span of only 18 days in the cyclic cow. Mechanisms controlling CL development and secretory function may involve factors produced both within and outside this gland. Although luteinizing hormone (LH) surge is the main trigger of ovulation and granulosa cells luteinization, many locally produced agents such as arachidonic acid (AA) metabolites, growth factors and cytokines were shown to complement gonadotropins action in the process of CL development. Bovine CL is a highly vascular gland, where the very rapid angiogenesis rate (until Day 5 of the cycle) results in the development of a capillary network, endowing this gland with one of the highest blood flow rate per unit mass in the body. Angiogenesis in the developing CL is later followed by either controlled regression of the microvascular tree in the non-fertile cycle or maintenance and stabilization of the blood vessels, as seen during pregnancy. Different luteal cell types (both steroidogenic and accessory luteal cells: immune cells, endothelial cells, pericytes and fibroblasts) are involved in the pro- and/or anti-angiogenic responses. The balance between pro- and anti-angiogenic responses to the main luteolysin - prostaglandin F2α (PGF2α) could be decisive in whether or not PGF2α induces CL regression. Fibroblast growth factor-2 (FGF2) may be one of the factors that modulate the angiogenic response to PGF2α. Manipulation of local production and action of FGF2 will provide new tools for reproductive management of dairy cattle. Luteolysis is characterized by a rapid decrease in progesterone production, followed by structural regression. Factors like endothelin-1, cytokines (tumour necrosis factorα, interferons) and nitric oxide were all shown to play critical roles in functional and structural regression of the CL by inhibiting steroidogenesis and inducting apoptosis.


Assuntos
Bovinos , Corpo Lúteo/crescimento & desenvolvimento , Luteólise , Animais , Corpo Lúteo/irrigação sanguínea , Corpo Lúteo/fisiologia , Citocinas/fisiologia , Dinoprosta/fisiologia , Endotelina-2/fisiologia , Feminino , Hormônios Esteroides Gonadais/fisiologia , Leucotrienos/fisiologia , Hormônio Luteinizante/fisiologia , Lisofosfolipídeos/fisiologia , Neovascularização Fisiológica , Prostaglandinas/fisiologia , Fator A de Crescimento do Endotélio Vascular/fisiologia
13.
Elife ; 2: e00481, 2013 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-23638300

RESUMO

Dengue Virus (DENV), a flavivirus spread by mosquito vectors, can cause vascular leakage and hemorrhaging. However, the processes that underlie increased vascular permeability and pathological plasma leakage during viral hemorrhagic fevers are largely unknown. Mast cells (MCs) are activated in vivo during DENV infection, and we show that this elevates systemic levels of their vasoactive products, including chymase, and promotes vascular leakage. Treatment of infected animals with MC-stabilizing drugs or a leukotriene receptor antagonist restores vascular integrity during experimental DENV infection. Validation of these findings using human clinical samples revealed a direct correlation between MC activation and DENV disease severity. In humans, the MC-specific product, chymase, is a predictive biomarker distinguishing dengue fever (DF) and dengue hemorrhagic fever (DHF). Additionally, our findings reveal MCs as potential therapeutic targets to prevent DENV-induced vasculopathy, suggesting MC-stabilizing drugs should be evaluated for their effectiveness in improving disease outcomes during viral hemorrhagic fevers. DOI:http://dx.doi.org/10.7554/eLife.00481.001.


Assuntos
Permeabilidade Capilar/fisiologia , Quimases/fisiologia , Vírus da Dengue/fisiologia , Leucotrienos/fisiologia , Mastócitos/fisiologia , Animais , Camundongos
14.
Toxicon ; 61: 1-10, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23085190

RESUMO

Inflammatory mediators are thought to be involved in the systemic and local immune response induced by the Tityus serrulatus scorpion envenomation. New functional aspects of lipid mediators have recently been described. Here, we examine the unreported role of lipid mediators in cell recruitment to the peritoneal cavity after an injection with Ts2 or Ts6 toxins isolated from the T. serrulatus scorpion venom. In this report, we demonstrate that following a single intraperitoneal (i.p.) injection of Ts2 or Ts6 (250 µg/kg) in mice, there was an induction of leukocytosis with a predominance of neutrophils observed at 4, 24, 48 and 96 h. Moreover, total protein, leukotriene (LT)B(4), prostaglandin (PG)E(2) and pro-inflammatory cytokine levels were increased. We also observed an increase of regulatory cytokines, including interleukin (IL)-10, after the Ts2 injection. Finally, we observed that Ts2 or Ts6 injection in 5-lipoxygenase (LO) deficient mice and in wild type (WT) 129sv mice pre-treated with LTs and PGs inhibitors (MK-886 and celecoxib, respectively) a reduction the influx of leukocytes occurs in comparison to WT. The recruitment of these cells demonstrated a phenotype characteristic of neutrophils, macrophages, CD4 and CD8 lymphocytes expressing GR1+, F4/80+, CD3+/CD4+ and CD3+/CD8+, respectively. In conclusion, our data demonstrate that Ts2 and Ts6 induce inflammation by mechanisms dependent on lipid mediators and cytokine production. Ts2 may play a regulatory role whereas Ts6 exhibits pro-inflammatory activity exclusively.


Assuntos
Citocinas/biossíntese , Mediadores da Inflamação/fisiologia , Inflamação/induzido quimicamente , Lipídeos/fisiologia , Venenos de Escorpião/toxicidade , Animais , Araquidonato 5-Lipoxigenase/metabolismo , Celecoxib , Movimento Celular/efeitos dos fármacos , Inibidores de Ciclo-Oxigenase 2/farmacologia , Imuno-Histoquímica , Indóis/farmacologia , Inflamação/patologia , Leucócitos/efeitos dos fármacos , Leucotrienos/biossíntese , Leucotrienos/fisiologia , Inibidores de Lipoxigenase/farmacologia , Masculino , Camundongos , Cavidade Peritoneal/patologia , Prostaglandinas/biossíntese , Prostaglandinas/fisiologia , Pirazóis/farmacologia , Sulfonamidas/farmacologia
15.
Curr Opin Allergy Clin Immunol ; 13(1): 4-12, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23222070

RESUMO

PURPOSE OF REVIEW: Evidence suggests that some structural changes caused by mucosal remodeling may be primarily irreversible, which theoretically challenges the current management model of chronic rhinosinusitis (CRS). The relationship between inflammation and remodeling in the mucosa remains complex, yet better understanding of involved pathways holds potential clinical implications. This article reviews the controversies as well as current applications from the literature. RECENT FINDINGS: First, the relationship between inflammation and remodeling is a complex one involving multiple pathways, with evidence suggesting that remodeling is not a simple fibrotic end-stage process secondary to long-standing inflammation. Second, anti-inflammatory approaches alone are probably not successful in reversing changes such as collagen deposition, indicating that early treatment might be crucial for preventing disease progression. Third, a dysfunctional sinus remains a pure clinical/surgical phenomenon with lack of histological characterization. Fourth, maximal/extensive surgical techniques are advocated for patients with severe disease or dysfunctional sinuses. SUMMARY: Reversibility of remodeling holds implications for the management of CRS. Although clinical applications (both medical and surgical) exist, further research is required for solidifying current evidence as well as exploring new avenues for therapy.


Assuntos
Remodelação das Vias Aéreas , Rinite/patologia , Sinusite/patologia , Doença Crônica , Cisteína/fisiologia , Eosinofilia/patologia , Humanos , Leucotrienos/fisiologia , Metaloproteinase 9 da Matriz/fisiologia , Rinite/tratamento farmacológico , Sinusite/tratamento farmacológico
16.
Mol Biol Cell ; 23(22): 4456-64, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23015755

RESUMO

Leukotrienes (LTs) are lipid-signaling molecules derived from arachidonic acid (AA) that initiate and amplify inflammation. To initiate LT formation, the 5-lipoxygenase (5-LO) enzyme translocates to nuclear membranes, where it associates with its scaffold protein, 5-lipoxygenase-activating protein (FLAP), to form the core of the multiprotein LT synthetic complex. FLAP is considered to function by binding free AA and facilitating its use as a substrate by 5-LO to form the initial LT, LTA(4). We used a combination of fluorescence lifetime imaging microscopy, cell biology, and biochemistry to identify discrete AA-dependent and AA-independent steps that occur on nuclear membranes to control the assembly of the LT synthetic complex in polymorphonuclear leukocytes. The association of AA with FLAP changes the configuration of the scaffold protein, enhances recruitment of membrane-associated 5-LO to form complexes with FLAP, and controls the closeness of this association. Granulocyte monocyte colony-stimulating factor provides a second AA-independent signal that controls the closeness of 5-LO and FLAP within complexes but not the number of complexes that are assembled. Our results demonstrate that the LT synthetic complex is a signal integrator that transduces extracellular signals to modulate the interaction of 5-LO and FLAP.


Assuntos
Leucotrienos/metabolismo , Membrana Nuclear/metabolismo , Proteínas Ativadoras de 5-Lipoxigenase/metabolismo , Animais , Araquidonato 5-Lipoxigenase/metabolismo , Ácido Araquidônico/metabolismo , Leucotrienos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Transdução de Sinais
17.
Toxicology ; 300(1-2): 92-9, 2012 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-22706168

RESUMO

The agricultural fungicide N-(3,5-dichlorophenyl)succinimide (NDPS) can induce marked nephrotoxicity in rats following a single intraperitoneal (ip) administration of 0.4mmol/kg or greater. Although NDPS induces direct renal proximal tubular toxicity, a role for renal vascular effects may also be present. The purpose of this study was to examine the possible role of vasoconstrictor leukotrienes in NDPS and NDPS metabolite nephrotoxicity. Male Fischer 344 rats (4 rats/group) were administered diethylcarbamazine (DEC; 250 or 500mg/kg, ip), an inhibitor of LTA(4) synthesis, 1h before NDPS (0.4mmol/kg, ip), N-(3,5-dichlorophenyl)-2-hydroxysuccinimide (NDHS, 0.1, 0.2, or 0.4mmol/kg, ip), or N-(3,5-dichlorophenyl)-2-hydroxysuccinamic acid (2-NDHSA, 0.1mmol/kg, ip) or vehicle. In a separate set of experiments, the LTD(4) receptor antagonist LY171883 (100mg/kg, po) was administered 0.5h before and again 6h after NDHS (0.1mmol/kg, ip) or 2-NDHSA (0.1mmol/kg, ip) or vehicle. Renal function was monitored for 48h post-NDPS or NDPS metabolite. DEC markedly reduced the nephrotoxicity induced by NDPS and its metabolites, while LY171883 treatments provided only partial attenuation of NDHS and 2-NDHSA nephrotoxicity. These results suggest that leukotrienes contribute to the mechanisms of NDPS nephrotoxicity.


Assuntos
Fungicidas Industriais/toxicidade , Rim/efeitos dos fármacos , Leucotrienos/fisiologia , Succinimidas/toxicidade , Acetofenonas/farmacologia , Animais , Dietilcarbamazina/farmacologia , Injeções Intraperitoneais , Rim/patologia , Leucotrieno A4/metabolismo , Leucotrieno A4/fisiologia , Leucotrienos/metabolismo , Masculino , Ratos , Ratos Endogâmicos F344 , Receptores de Leucotrienos/efeitos dos fármacos , Succinatos/farmacologia , Succinimidas/farmacologia , Tetrazóis/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...